首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3416篇
  免费   395篇
  国内免费   141篇
测绘学   125篇
大气科学   209篇
地球物理   1574篇
地质学   1098篇
海洋学   338篇
天文学   29篇
综合类   24篇
自然地理   555篇
  2024年   13篇
  2023年   21篇
  2022年   27篇
  2021年   73篇
  2020年   149篇
  2019年   119篇
  2018年   112篇
  2017年   165篇
  2016年   155篇
  2015年   122篇
  2014年   143篇
  2013年   361篇
  2012年   73篇
  2011年   104篇
  2010年   99篇
  2009年   161篇
  2008年   234篇
  2007年   205篇
  2006年   200篇
  2005年   183篇
  2004年   147篇
  2003年   116篇
  2002年   99篇
  2001年   89篇
  2000年   107篇
  1999年   99篇
  1998年   97篇
  1997年   94篇
  1996年   68篇
  1995年   67篇
  1994年   49篇
  1993年   52篇
  1992年   31篇
  1991年   23篇
  1990年   21篇
  1989年   20篇
  1988年   20篇
  1987年   7篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有3952条查询结果,搜索用时 31 毫秒
61.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   
62.
63.
Three methods were combined to determine the groundwater recharge and transfer processes of a landslide prone area. First, the radiomagnetotelluric method was used to investigate the distribution of electrical resistivity (ρ) of the subsurface and build a three-dimensional model of permeability (k), through an experimental relation between ρ and k. Second, this structural model of permeability and additional climatologic data were used to fix boundary and recharge conditions to perform a three-dimensional and transient numerical simulation of the groundwater flow. Finally 18-Oxygen time series observed at the main springs were used to validate the model. This association of methods led to an improved characterization of the groundwater flow system at local scale and a better understanding of the role of this system on the landslide phenomenon. This structured approach is thought to be useful to design specific remediation strategies to drain the unstable mass.  相似文献   
64.
Gamma ray logging is a method routinely employed by geophysicists and environmental engineers in site geology evaluations. Modelling of gamma ray data from individual boreholes assists in the local identification of major lithological changes; modelling these data from a network of boreholes assists with lithological mapping and spatial stratigraphic correlation. In this paper we employ Bayesian spatial partition models to analyse gamma ray data spatially. In particular, a spatial partition is defined via a Voronoi tessellation and the mean intensity is assumed constant in each cell of the partition. The number of vertices generating the tessellation as well as the locations of vertices are assumed unknown, and uncertainty about these quantities is described via a hierarchical prior distribution. We describe the advantages of the spatial partition modelling approach in the context of smoothing gamma ray count data and describe an implementation that may be extended to the fitting of a more general model than a constant mean within each cell of the partition. As an illustration of the methodology we consider a data set collected from a network of eight boreholes, which is part of a geophysical study to assist in mapping the lithology of a site. Gamma ray logs are linked with geological information from cores and the spatial analysis of log data assists with predicting the lithology at unsampled locations.  相似文献   
65.
66.
67.
68.
Remote sensing technologies are increasingly used to monitor landscape change in many parts of the world. While the availability of extensive and timely imagery from various satellite sensors can aid in identifying the rates and patterns of deforestation, modelling techniques can evaluate the socioeconomic and biophysical forces driving deforestation processes. This paper briefly reviews some emerging spatial methodologies aimed at identifying driving forces of land use change and applies one such methodology to understand deforestation in Mexico. Satellite image classification, change analysis and econometric modelling are used to identify the rates, hotspots and drivers of deforestation in a case study of the southern Yucatán peninsular region, an enumerated global hotspot of biodiversity and tropical deforestation. In particular, the relative roles of biophysical and socioeconomic factors in driving regional deforestation rates are evaluated. Such methodological approaches can be applied to other regions of the forested tropics and contribute insights to conservation planning and policy.  相似文献   
69.
A salt water lens is found above fresh water under the shore between Dunkerque (France) and Nieuwpoort (Belgium). This inverse density distribution is in a dynamic equilibrium. It develops due to the infiltration of salt water on the back shore during high tide. Under this salt water lens, water infiltrated in the adjacent dune area flows towards the sea and discharges at the seabed. This water quality distribution differs from the classic salt water wedge under fresh water described in the literature. Here, the evolution to this water quality distribution is simulated with a density dependent numerical model. A large tidal range, shore morphology and a permeable groundwater reservoir are the main conditions for the observed water quality distribution. By altering these conditions, intermediate water quality distributions between the classic salt water wedge and the one discussed here develop. Based on these simulations, it is expected that similar kinds of inverse density distribution could be present in a number of coastal areas, which have tides, a gently sloping shore and a permeable substratum.  相似文献   
70.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号